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1. KINEMATICS OF A PARTICLE 

  

1.1. Introduction to Kinematics 

 
Kinematics is a part of mechanics which treats of the geometrical aspects of the 

bodies, without taking into account their inertia, i.e., mass or the forces acting on 
them. 

Kinematics is an introduction to dynamics, insofar as the fundamental concepts 
and relationships of Kinematics have to be understood before studying the motion of 
bodies taking into account the action of forces. On the other hand, the methods of 
Kinematics are in themselves of practical importance, for example in studying the 
transmission of motion in mechanisms. 

By motion in Kinematics is meant the relative displacement with time of a body 
in space with respect to other bodies. 

In order to locate a moving body or particle we assume a coordinate system, 
which we call the frame of reference or reference system, to be fixed relative to the 
body with respect to which the motion is being considered. If the coordinates of all 
the points of a body remain constant within a given frame of reference, the body is 
said to be at rest relative to that reference system. If, on the other hand, the 
coordinates of any points of the body change with time, the body is said to be in 
motion relative to the given frame of reference. 

Any motion in space takes place with time. In mechanics we deal with three - 
dimensional Euclidean space. Time in mechanics is considered as universal, i.e., as 
passing simultaneously in all our frames of reference. Time is continuously varying 
quantity. In problems of Kinematics, time is taken as an independent variable or 
argument.  All other variables are regarded as changing with time, i.e., as functions of 
time. Any given instant of time is specified by the number of seconds that has passed 
between the initial and the given time. The difference between successive instants of 
time is called the time interval. 

The principles of Kinematics, evolved from and confirmed by practical 
experience, are based on the axioms of geometry.  No other laws or axioms are 
necessary for the Kinematics study of motion. 

For the solution of problems of Kinematics, the motion under consideration has 
to be described. To Describe the motion, or the law of motion, of a given body means 
to specify the position of that body relative to a given frame of reference for any 
moment of time. 

The principal problem of Kinematics is that of determining all the Kinematics 
characteristics of the motion of a body as a whole or of any of its particles (path, 
velocity, acceleration, etc.) when the law of motion is known. 

We shall start the study of Kinematics with an investigation of the simplest 
object - a particle, proceeding later to the examination of the Kinematics of rigid 
body. 
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1.2. Methods of Describing Motion of a Particle 

 

To describe the motion of a particle, it is necessary to specify its position in 
chosen frame of reference at any given time. There are three methods of describing 
motion: the natural method, the coordinate method and the vector one. Let us 
consider all of them. 

I) Natural method of Describing Motion. 
The continuous curve described by a particle moving 

with respect to a given frame of reference is called the 
path of that particle. If the path is a straight line, the 
motion is said to be rectilinear, if the path is a curve, the 
motion is curvilinear. 

Let the curve AB in Fig.1 be the path of a particle M 

moving with respect to a frame of reference OXYZ. Take 
any fixed point 0 on the path as the origin of another 

frame of reference. Taking the path as an arc-coordinate axis, assume the positive and 
negative directions, as is done with rectangular axes. The position of the particle M 
on the path is now specified by a single coordinate S, equal to the distance from 0 to 
M measured along the arc of the path and taken with the appropriate sign. The 
distance S changes with time. In order to know the position of M on the path at any 
instant, we must know the relation: 

( )S S t=                                                            (1) 

Eq. (I) expresses the law of motion of particle M along its path.   
Thus, in order to describe the motion of a particle by the natural method, a 

problem must state the path of the particle, the origin on the path, showing the 
positive and negative directions, the equation of the particle's motion along the path 
in the form (l). Note that S in Eq. (I) denotes the moving particle’s position, not the 
distance traveled by it. The Natural method is convenient when the particle’s path is 
known at once. 

2) Coordinate Method of Describing Motion. 
A particle’s path may not be known, that is why the coordinate method is 

employed more frequently. 

 

The position of a particle with respect to a given 
frame of reference OXYZ can be specified by its 
Cartesian coordinates x, y, z (Fig.2).  If we want to know 
the equation of motion of a particle, i.e. its location in 
space at any instant, we must know its coordinates for 
any moment of time: 

 ( )x x t= ,    ( )y y t=  ,     ( ).z z t=    (3) 
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Eqs. (3) are the equations of motion of a particle in terms of the Cartesian 
rectangular coordinates. They describe the curvilinear motion of a particle by the 
coordinate method. 

It's obvious, that if a particle moves in one plane, then, we shall obtain two 
equations of motion. 

Eqs (3) are, at the same time, the equations of the particle's path in parametric 
form. By eliminating time t from the equations of motion we can obtain the equation 
of the path in the usual form. 

3) Vector Method of Describing Motion. 
Let a particle M be moving relative to any frame of reference OXYZ. The 

position of the particle at any instant can be specified by a vector r  drawn from the 
origin O to the particle M. Vector r  is called the radius vector of the particle M. 

When the particle moves, the vector r  changes with time in both magnitude and 
direction. Thus, r  is a variable vector (a vector function) depending on the argument 
t : 

( ).r r t=         (4)  

Eq.(4) describes the curvilinear motion of a particle in vector form and can be 

used to construct a vector r  for any particular moment of time and to determine the 
position of the moving particle at that moment. 

The locus of the tips of vector r  defines the path of the moving particle. 
The vector method is convenient for establishing general dependencies, as it 

describes a particle's motion in terms of one vector equation (4) instead of the three 
scalar equations (3). 

 

1.3 . Velocity of a Particle 

 

One of the basic kinematical characteristics of motion of a particle is a vector 
quantity called velocity. 

Let a moving particle occupy at time t a position 

M defined by the radius vector r , and at time t1 a 

position M1 defined by the radius vector r  (Fig.3). The 
displacement during the time interval ∆t = t1-t is 

defined by a vector 1MM  which we shall call the 

displacement vector of the particle.  
From triangle OMM1 we obtain 1 1r MM r+ = , 

whence 1 1 -MM r r r= = ∆ . The ratio 
1

av

MM r
V

t t

∆
= =

∆ ∆
 is 

called the average velocity of the particle during the given time interval ∆t. 

Obviously, the smaller the time interval ∆t = t1-t the more precisely the average 
velocity will characterize the particle’s motion. To obtain a characteristic of motion 
independent of the choice of the time interval the concept of instantaneous velocity is 

introduced. It is a vector quantity V  towards which the average velocity avV  tends 

when the time interval ∆t tends to zero:  

Fig.3 

z 

 x 

  y 
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  V    Vav  

  1r    r  

   M1 

  r∆  
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( )
0 0

lim lim .ab
t t

r dr
V V

t dt∆ → ∆ →

∆
= = =

∆
 

Thus, the vector of instantaneous velocity of a particle is equal to the first 
derivative of the radius vector of the particle with respect to time: 

.
dr

V
dt

=                                                    (5) 

As the limiting direction of the secant MM1 is a tangent, the vector of 
instantaneous velocity is tangent to the path of the particle in the direction of motion. 

 

1.4. Acceleration of a Particle 

 

Acceleration characterizes the time rate of change of velocity in magnitude and 
direction. 

Let a moving particle have a velocity V  at a given time t, and a velocity 1V  - at 

time t1. The increase in velocity in the time interval ∆t = t1-t is 1 - .V V V∆ =  The ratio 

of the velocity increment vector V∆  to the corresponding time interval ∆ t defines the 
vector of average acceleration of the particle in the given time interval: 

.av

V
a

t

∆
=

∆
 

The instantaneous acceleration at a given time t is defined as the vector quantity 

a  towards which the average acceleration ava  tends when the time interval ∆t tends 
to zero: 

lim ,
0

av

V dV

t dtt
a

∆
= =

∆∆ →
 

or, taking into account (5), 
2

2
.

dr d V
a

dt dt
= =                                         (6) 

Hence, the instantaneous acceleration of a particle is equal to the first derivative 
of the velocity vector or the second derivative of the radius vector of the particle with 
respect to time. 

In general case, the acceleration vector a  lies in the osculating plane and is 
directed towards the inside of the curve. 

The osculating plane trough a point M on a curve may be defined as the limiting 
position of a plane trough points M, M1 and M2 of the given curve when points M. 

The osculating plane of a plane curve is coincident with the plane of the curve 
and is common for all its points. 

 

1.5. Determination of the Velocity and acceleration of a Particle when its 

Motion is Described by the Coordinate Method 

The following well-known theorem will be found useful in solving vector 
equations containing derivatives when it is necessary to go over from relations 
between vectors to relations between their projections: 
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the projection of the derivative of a vector on a fixed axis is equal to the 

derivative of the projection of the differentiated vector on the same axis. 

That is to say, if ,
x y z

p ip jp kp= + +  

x y z
q iq jq kq= + +  and ,

dp
q

dt
=  then 

, , .yx z

x y z

dpdp dp
q q q

dt dt dt
= = =             (7) 

Let the motion of the particle be described by Eqs, (3). The velocity vector of a 

particle is .
dr

V
dt

=  

Using the relations (7) we obtain: 

, , ,
x y z

dx dy dz
V V V

dt dt dt
= = =  

or                                        , , .
x y z

V x V y V z= = =� � �                     (8) 

 where x, y and z are the coordinate of the particle and the dot over the letter is a 
symbol of differentiation with respect to time. 

Thus the projections of the velocity on the coordinate axes are equal to the first 
derivatives of the corresponding coordinates of the particle with respect to time. 

Knowing the projections of the velocity we can find its magnitude and direction 
from the equations: 

2 2 2 ,x x y zV V V V= + +                                          (9) 

cos cos cos .
yx z

VV V

V V V
α β γ= = =  

The acceleration vector of a particle is .
dV

a
dt

=  

Hence, from the theorem of the projection of a derivative and from Eqs. (8), we 
obtain: 

2 2 2

2 2 2
, ,

yx z
x y z

dVdV d x d y dV d x
a a a

dt dt dt dt dt dt
= = = = = =               (10) 

or  

, , .
x x y y z z

a V x a V y a V z= = = = = =� � ��� �� ��  

Thus, the projections of the acceleration on the coordinate axes are equal to the 
first derivatives of the projections of the velocities, or the second derivatives of the 
corresponding coordinates of the particle with respect to time. 

The magnitude and direction of the vector acceleration are given by the 
equations: 
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2 2 ,x y za a a a= + +                                         (11) 

1 1 1cos , cos , cos
yx z

aa a

a a a
α β γ= = = ,  

where α1, β1 and γ1 are the angles made by the acceleration vector with the coordinate 
axes. 

 

1.6. Determination of the Velocity of a Particle when its Motion is Described by 

the Natural Method  

 

Given the path of a particle and the law of motion along it in the form S=S(t). 
Let us see how the velocity of a particle can be determined. If in a time interval 

∆t=t1-t a particle moves from position M to position M1, 
displacement along the arc of the path being ∆S=S1-S 
(Fig.4), the numerical value of the average velocity will                                     

be:            1

1

-
.

-
av

S S S
V

t t t

∆
= =

∆
           

Passing to the limit we obtain the numerical value of the 
instantaneous velocity for a given time t:  

  
0.

lim
t

S
V

t∆ →

∆
=

∆
   .

dS
V S

dt
= = �                                (12) 

 

Hence, the numerical value of the instantaneous velocity of a particle is equal to 
the first derivative of the displacement of the particle with respect to time. 

The velocity vector is tangent to the path, the latter assumed to be known. 
 

1.7. Determination of the Acceleration of a Particle When its Motion is 

Described by the Natural Method 

 

In p. l.5 we considered the 
stationary coordinate axes. In the 
natural method of describing motion, 
vector a is determined from its 
projections on a set of coordinate axes 

Mτnb   whose origin is at  M  and who 
moves together with the body (Fig.5).  

 These axes called the axes of a natural trihedron or velocity axes are directed as 

follows: axis Mτ along the tangent to the path in the direction of the positive 
displacement S, axis Mn along the normal in the osculating plane towards the inside 
of the path, and axis Mb perpendicular to the former two to form a right-hand set. The 

  S 
-0+ 

  ∆S 
  S1 

  Fig.4 

S 
-0+ 

M 

n v1 

v τ 

a 
M1 b ∆φ 

v1n 

           Fig.5 
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normal Mn, which lies in  the osculating plane, is called the principal normal, and the 
normal Mb  perpendicular to it is called the binormal. 

The projection of vector a  on the binormal is zero ( )0ba = , as vector 

acceleration lies in the osculating plane and the axis Mb  is a perpendicular to it.  

Let us determine the projections of a  on the other two axes. Let the particle 

occupy a position M and have a velocity 
_

V  at any time t, and at time t1 = t+∆t let it 

occupy a position M1 and have a velocity 
_

1 .V  Then, by virtue of the definition, 
_ _ _

1

0 0

-
lim lim .

t t

V V V
a

t t∆ → ∆ →

∆
= =

∆ ∆
 

Let us project both parts of this equation on the axes Mτ and Mn through point M 
taking into account the theorem of the projection of a vector sum on an axis. Then we 
obtain: 

1 1

0 0

- -
lim , lim .n n

n
t t

V V V V
a a

t t
τ τ

τ
∆ → ∆ →

= =
∆ ∆

 

Denote the angle between the direction of vector 
_

1V and 
_

V by the ∆ϕ. This angle 
is called the angle of contiguity. 

It will be recalled that the limit of the ratio of the angle of contiguity ∆ϕ to the 

arc 
_____

1MM S= ∆  defines the curvature K of the curve at point M. As the curvature is the 

inverse of the radius of curvature ρ at M, we have: 

0

1
lim .
S

K
S

ϕ

ρ∆ →

∆
= =

∆
 

From Fig. 5 we see: , 0,nV V Vτ = =         1 1 1 1cos , sin .nV V V V yτ ϕ= ∆ = ∆  

Hence, 

1
1

0 0

cos - sin
lim , lim .n

t t

V V
a a V

t t
τ

ϕ ϕ
∆ → ∆ →

∆ ∆ 
= =  

∆ ∆ 
               (13) 

It is obvious, that when 0,t∆ →  point M1 approaches M indefinitely, and 

simultaneously 10, 0, .S V Vϕ∆ → ∆ → →  

Hence, taking into account that ( )
0

lim cos 1
ϕ

ϕ
∆ →

∆ =  we obtain: 

1

0

-
lim .

t

V V dV
a

t dt
τ

∆ →
= =

∆
 

Multiplying the numerator and denominator of the second formula in Eq.(13) by 

∆ϕ∆S we find: 
2

1lim ,n
t n

sin S V
a V

S t

ϕ ϕ

ϕ ρ∆ →

 ∆ ∆ ∆
= × × = 

∆ ∆ ∆ 
 

since, when ∆t → 0 the limits of each of the cofactors inside the brackets are as 
follows: 
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1

1
lim , lim 1, lim , lim .

sin S dS
V V V

S t dt

ϕ ϕ

ϕ ρ

∆ ∆ ∆
= = = = =

∆ ∆ ∆
 

Finally we obtain:                            
2 2

2
, .n

dV d S V
a a

dt dt
τ

ρ
= = =                               (14) 

Thus, the projection of the acceleration of a 
particle on the tangent to the path is equal to the 
first derivative of the numerical value of the 
velocity, or the second derivative of the 
displacement with respect to time; the projection 
of the acceleration on the principal normal is 
equal to the second power of the velocity divided 
by radius of curvature of the path at the given 
point of the curve.      

Lay off vectors aτ and na  along the tangent 

Mτ and the principal normal Mn. The component 

na  is always directed along the inward normally as na  > 0, while the component aτ 

can be directed either in the positive or in the negative direction of the axis Mτ 

depending on the sign of the projection aτ . 

As the components aτ  and na  are mutually perpendicular y the magnitude of 

vector a and its angle µ  to the normal Mn  are given by the equations: 

2 2 , .n

n

a
a a a tan

a

τ
τ µ= + =                        (15) 

Thus, from Eqs. (I2) and (15) we can determine the magnitude and direction of the 
velocity and acceleration of the particle for any instant. 

 

1.8. Some Special Cases of Particle Motion 

 

Let us investigate some special cases of particle motion. 

1) Rectilinear Motion. If the path of a particle is a straight line, then ρ=∞, 
2

0n

V
a

ρ
= =  and the tota1 acceleration is equal to the tangential acceleration: 

.
dV

a a
dt

τ= =  

As in this case the velocity changes only in magnitude, we conclude that the 
tangential acceleration, characterizes the change of speed. 

2) Uniform Curvilinear Motion. Curvilinear motion is uniform when the speed is 

constant: V = const. Then 0,
dV

a
dt

τ = =  and the total acceleration is equal to the 

n a 

an 

M 

µ 

aτ 
τ 

            Fig.6 
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normal one: 
2

.n

V
a a

ρ
= =  In this case vector a  is continuously directed along the 

normal to the path of the particle. 
As in this case acceleration is represented only by the change in the direction of 

the velocity, we conclude that the normal acceleration characterizes the change of the 
velocity in direction. 

Let us deduce the equation of uniform curvilinear motion. From Eq.(12) we 
have  .dS Vdt=  

Let a particle be at the initial time t = 0 at a distance 0S  from the origin. 

Integrating both members of the equation over the respective intervals we obtain: 

0 0

S t

S

dS Vdt+∫ ∫  or 0- .S S Vt=  

Finally, we obtain the equation of uniform curvilinear motion in the form: 

0 .S S Vt= +  

3) Uniform Rectilinear Motion. In this case obviously, 0,na aτ= =  therefore, 0a = . 

Note that uniform rectilinear motion is the only case of motion in which the 
acceleration is continually zero. 
4) Uniformly Variable Curvilinear Motion. Curvilinear motion is called uniformly 

variable if the tangential acceleration is constant: a constτ =  

 Let us deduce the equation of this motion assuming that at t=0, S=S0 and V=V0. 

By Eq.(I4), .dV a dtτ=  

As a constτ = integrating both members of the last equation over the 

corresponding intervals gives us: 

0 .V V a tτ= +  

Let us write this equation in the form: 

0 ,
dS

V a t
dt

τ= +      or      0 .dS V dt a tdtτ= +  

Integrating again we obtain: 

2

0 0 .
2

t
S S V t aτ= + +  

If, in curvilinear motion, the speed increases, the motion is said to be 
accelerated, if it decreases the motion is said to be retarded. 

As the change in magnitude of the velocity is characterized by the tangential 

acceleration, the motion is accelerated if V and aτ  have the same signs and retarded 

if the signs are different. 

In the particular case of uniformly variable motion, if V and aτ  are of the same 

sign the motion is uniformly accelerated, if they are of opposite sign the motion is 
uniformly retarded. 
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2. TRANSLATIONAL AND ROTATIONAL MOTION OF 

A RIGID BODY 

2.1. Translational Motion 

In Kinematics we shall regard all solids as rigid bodies, i.e., we shall assume that 
the distance between any two points of a body remains the same during the whole 
period of motion. 

Problems of Kinematics are basically of two types: definition of the motion and 
analysis of the Kinematic Characteristics of the motion of a body as a whole and 
analysis of the motion of every point of the body in particular. 

We shall begin with the consideration of the simplest motion, i.e., translational 
one. 

Translation of a rigid body is such a motion in which any straight line through 
the body remains continually parallel to 
itself. 

Translation should not be confused with 
rectilinear motion. In translation the particles 
of a body may move on any curved paths. 
Here is one example of translation. 

The motion of the connecting rod AB  in 
Fig.7 is that of translation, since, when the 
cranks O1A and O2B (O1A=O2B) rotate, any 
straight line through the rod remains parallel  

to itself. The particles of the connecting rod travel in circles. 
The properties of translational motion are defined by the following theorem: in 

translational motion, all the particles of a body move along similar paths (which will 
coincide if superimposed) and have at any instant the same velocity and acceleration. 
Let us prove the theorem. Take two arbitrary points A and D on the body whose 

positions at time t are specified by radius 

vectors 
_

Ar and 
_

Br  (Fig. 8). 

Draw a vector AB joining the two 
points. It is obvious that 

_ _ ____

.B Ar r AB= +    (16) 

The length of 
_____

AB  is constant, being the 
distance between two points of a rigid 
body, and the direction of AB is constant 
by virtue of the translational motion of the 

body. Thus, the vector AB is constant. It 
follows then from Eq. (l6) that the path of 
particle B can be obtained by a parallel 

displacement of all the points of the path of particle A through a constant vector AB . 
Hence, the paths of particles A and B are identical curves which will coincide if 

superimposed. 

Fig.8 

B 

B1 

z 

x 
y 

A 

A1 Ar  

Br  

Fig.8 

Fig.7 

O1 
O2 

A B 
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Differentiating both parts of Eq. (I6) with respect to time we have:        
___

_ _

.
B A

d AB
d r d r

dt dt dt

 
 
 = +  

Taking into account that 
_____

AB = const we obtain 
_ _

,A BV V= i.e., at any instant the 

velocities of points A and B are equal in magnitude and directions. 

Differentiating again we obtain: 

_ _

A BdV dV

dt dt
=      or     .Ba a=  

Hence, at any instant the accelerations of A and B are equal in magnitude and 
direction. 

As points A and B are arbitrary, it follows that the paths, the velocities and 
accelerations of all the points of a body at any instant are the same, which proves the 
theorem. 

It follows from the theorem that the translational motion of a rigid body is fully 
described by the motion of any point belonging to it. Thus, the analysis of 
translational motion of a rigid body is reduced to the methods of particle Kinematics 
examined before. 

 

2.2. Rotational Motion of a Rigid Body. Angular Velocity 

and Angular Acceleration 

 

Rotation of a rigid body is such a motion in which there is always two points of 
the body or two points continuously connected with this body which remain 
motionless. The line through these fixed points is called the axis of rotation. 

Since the distance between the points of a rigid body does not change, it is 
evident that all points of the axis of rotation are motionless, while all the other points 

of the body describe circular paths the plane 
of which are perpendicular to the axis of 
rotation and the centers of which lie on it. 

To determine the position of a rotating 
body, let us pass two planes through the axis 
of rotation Az; plane I, which is fixed, and 
plane II through the rotating body and rotating 
with it. The position of the body at any instant 

will be fully specified by the angle ϕ  between 
the two planes, taken with the appropriate 
sign, which we shall call the angle of rotation 
of the body.  

We shall consider the angle positive if it 
is laid off counterclockwise from the fixed 
plane by an observer looking from the positive 

 

z 

B 

V  

dS 
M 

dφ C 

A 

φ 

 
Fig.9 
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end of axis Az and negative if it is laid off clockwise. 
Then, the position of a body at any instant is completely specified if we know the 

angle ϕ as a function of time t, i.e., 

( ).tϕ ϕ=      (17) 

 
Eq. (I7) describes the rotational motion of a rigid body. The basic Kinematical 

Characteristics of the rotation of a rigid body are its angular velocity ω and angular 

acceleration ε. 

If in an interval of time 1t t t∆ = −  a body turns through an angle 1 ,ϕ ϕ ϕ∆ = −  

the average angular velocity of the body in the given time interval is .
av

t

ϕ
ω

∆
=

∆
 

The angular velocity of the body at a given time t is the in value towards which 

avω tends when the time interval ∆t tends to zero: 

0
lim

t t

ϕ
ω

∆ →

∆
=

∆
      or     .

d

dt

ϕ
ω =                                        (18) 

Thus, the angular velocity of a body at a given time is equal in magnitude to the 
first derivative of the angle of rotation with respect to time. 

The sign of ω specifies the direction of the rotation. It will be noticed that ω >0 

when the rotation is counterclockwise, and ω  < 0 when it is clockwise. 
The angular velocity of a body can be denoted by a vector ω  of magnitude 

d

dt

ϕ
ω =  along the axis of rotation in the direction from which the rotation is seen as 

counterclockwise. Such a vector simultaneously gives the magnitude of the angular 
velocity, the axis of rotation, and. the sense of rotation about that axis. 

Angular acceleration characterizes the time rate of change of the angular velocity 
of a rotating body. 

If in time interval 1t t t∆ = −   the change of angular velocity of a body is 

1 ,ω ω ω∆ = −  the average angular acceleration in that interval of time is 

.
av

t

ω
ε

∆
=

∆
 

The angular acceleration at a given time is the value towards which avε tends 

when the time interval ∆ t tends to zero: 

0
lim ,

t

d

t dt

ω ω
ε

∆ →

∆
= =

∆
 

or taking into account Eq.(l8) 
2

2
.

d d

dt dt

ω ϕ
ε = =     

 (19) 

Thus, the angular acceleration of a 
body at a given time is equal in magnitude 
to the first derivative of the angular 

   

B 
   

B 

ω  ω  

    ε 

A A 

c 

Fig.10 
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velocity, or the second derivative of the angular displacement, of the body with 
respect to time. 

If the angular velocity increases in magnitude, the rotation is accelerated, if it 
decreases, the rotation is retarded. It will be readily noticed that the rotation is 

accelerated when ω and ε are of the same sign, and retarded when they are of 
different sign. 

By analogy with angular velocity, the angular acceleration of a body can be 

denoted by a vector 
_

ε  along the axis of rotation. The direction of  
_

ε  coincides with 

that of 
_

ω  when the rotation is accelerated, and is of opposite sense when the rotation 
is retarded.  

 

     2.3. Uniform and Uniformly Variable Rotations 

 

   If the angular velocity of a rotating body does not change the rotation is said to be 
uniform. 

Let us develop the equation of uniform rotation. We have from Eq. (l8) 

.d dtϕ ω=  Hence, assuming that at the initial moment t = 0 angle ϕ = 0 and 

integrating the left-hand member from 0 to t and the right-hand member from 0   to   t   
we obtain: 

.tϕ ω=                 (20) 

In engineering, the velocity of uniform rotation is often expressed as the number 
of revolutions per minute (rpm). 

Let us establish the relation between n rpm and ω 1sec− . A complete revolution 
turns a body through an angle of 2π  and n revolutions take it through an angle2 nπ . 

If the duration of this rotation is  1min 60 ,t sec= =  then from Eq.(l8) we have: 

0,1 .
30

n
n

π
ω = ≈  

If the angular acceleration of a body does not change during the 

rotation( )constε = , rotation is said to be uniformly variable. 

Let us develop the equation of this motion assuming that at the initial instant t=0 

angle ϕ=0 and that the angular velocity 0.ω ω= From Eq. (l9) we have .d dtω ε=  

Integrating the both parts of this equation in respective limits we obtain: 

0 .tω ω ε= +                                                   (21) 

Let us write Eq.(2I) in the form: 

0

d
t

dt

ϕ
ω ε= +      or     0 .d dt tdtϕ ω ε= +  

Integrating again we obtain the equation of uniformly variable rotation: 

2

0 .
2

t
tϕ ω ε= +                                               (22) 
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2.4. Velocities and Accelerations of the Points of a Rotating Body 

 

Having established the characteristics of the motion of bodies as a whole, let us 
now investigate the motion of the individual points of a body. 

Consider a point M of a rigid body at a distance h from the axis of rotation Az 
(Fig.9). If in time dt the body makes an infinitesimal displacement through the angle 

dϕ, point M will have made displacement dS hdϕ=  along its path. The velocity of 

the point is the ratio of dS to dt , i.e., 

            ,
dS d

V h
dt dt

ϕ
= =       or     .V hω=                                      (23) 

Thus, the linear velocity of a point belonging to a rotating body is equal to the 
product of the angular velocity of that body and the distance of the point from the 
axes of rotation. 

The linear velocity is tangent to the circle described by point. As the value of ω 

at any given instant is the same for all points of the body, it follows from Eq. (23) 
that the liner velocity of any point of a rotating body is proportional to its distance 
from the axis of rotation (Fig. 11).  In order to determine the acceleration of point, we 
apply equations 

2

, .n

dV V
a a

dt
τ

ρ
= =  

In our case, .hρ =  Substituting the expression for V 

from Eq. (23) we obtain: 
 

2 2

, ,n

d h
a h a

dr h
τ

ω ω
= =  

and finally: 2, .na h a hτ ε ω= =                           (24) 

The tangential and normal accelerations are shown in Fig.12. The total acceleration 
of a point is  

2 2 2 4.na a a hτ ε ω= + = ⋅ +                           (25) 

The inclination of the vector of total 
acceleration to the radius of the circle 
described by the point is specified, by the 

angle µ  given by the equation: 

 

2
.

n

a
tan

a

τ ε
µ

ω
= =                                    (26) 

 
 

Since at any given instant ε and ω are each the same for all the points of the 
body, it follows that the accelerations of all the points of a rotating body are 

Fig. 11 

V  

    Fig.12 

a
τ

 

v 

ω 

a  

n
a  µ 
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proportional to their distances from the axis of rotation and make the same angle with 
the radii of the circles described by them. 

 

3.  PLANE MOTION OF A RIGID BODY 

 3.I. Equations of Plane Motion. Resolution of Motion Into Translation and 

Rotation 

 

Plane motion of a rigid body is such motion in which all its points move parallel 
to a fixed plane. Many machine parts have plane motion, for example, a wheel 
running on a straight track or connecting rod of a reciprocating engine. Rotation is, in 
fact, special case of plane motion. 

Let us consider the section S of a body produced by passing any plane Oxy 
parallel to a fixed plane P (Fig.13). All the points of the body belonging to a line 
MM ′normal to plane P move in the 

                               
 
 

same way. Therefore, in investigating plane motion it is sufficient to investigate the 
motion of section S of that body in the plan Oxy. 

The position of section S in plane Oxy is completely specified by the position of 
any line AB in this section (Fig. I4) The position of the line AB may be specified by 

the coordinates XA and yA of point A and the angle ϕ  between an arbitrary line AB in 
section S and axis x. 

The point A chosen to define the position of section S is called the pole. As the 

body moves, the quantities XA ,   yA and ϕ will change with time and the motion of the 
body, i.e. its position in space at any moment of time, will be completely specified if 
we know 

( ) ( ) ( ), , .A A A Ax x t y y t tϕ ϕ= = =                               (27) 

 
Eqs.(27) are the equations of plane motion of a rigid body. 

Consider the successive positions I and II of the section S of a moving body 
(Fig. 15). It will be observed that the following method can be employed to move 
section 0 from position I to position II. Let us first translate the body so that pole A1 

occupies 

Fig. 14 

 

y 

x 

ya 

xa 

A

y 

B

y 
φ 

(S) 

Fig. 13 

 

M’ 

M  (S) 

P 

x 0 

y 



 18

 

                        
             

position A2 (line A1B1 occupies position 2 1A B ′ )   and then turn the section about pole A2 

through angle 1ϕ∆ . In the same way we can move the body from position II to some 

new position III, etc. 
Thus, the plane motion of a rigid body is a combination of a translation, in which 

all the points move in the same way as the pole A, and of a rotation about that pole. 
The rotation takes place about an axis perpendicular to the plane P through the 

pole A. For the sake of brevity, however, we shall speak simply of rotation about the 
pole A. 

The translational component of plane motion can, evidently, be described, by the 
first two of Eqs. (27),  and the rotational component by the 
third one.  

The principal kinematic characteristics of plane motion 
are the velocity and acceleration of translation, and the 

angular velocity ω and angular acceleration ε of the rotation 
about the pole. The values of these characteristics can be 
found for any time from Eqs.(27). 

 
 

In analyzing plane motion, we are free to choose any point of the body as the 
pole. Let us consider a point C as a pole instead of A and determine the position of 

the line CD making an angle ϕ1 with axis x (Fig.16). The characteristics of the 
translatory component of the motion would have been different, for in the general 

case 
_ _

C AV V≠  and c aa a≠  (otherwise the motion would be that of pure translation). 

The characteristics of the rotational component of the motion ω and ε remain, 
however, the same. For, drawing CB  parallel to AB, we find that at an instant, of time 

,1 1ϕ ϕ α= −  where .constα =  Hence ,1ϕ ϕ=
i i

 ,1ϕ ϕ=
i i i i

 or 1ω ω= ,  .1ε ε=  Thus, the 

rotational component of motion does not depend, on the position of the pole. 
 

 

 

Fig. 15 
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3.2. Determination of the Path and Velocity of a Point of a Body 

 

Let us now investigate the motion of individual points of a rigid body. We shall 
begin with the determination of the paths and velocities.  

Consider a point M of a body whose position in the 
section S is specified by its distance b = AM from the 

pole A and angle α (Fig. I7).If the motion, of the body is 
described by Eqs. (27), the x and y coordinates of point 
M in the system Oxy will be 

 

( )

( )

cos ,

sin ,

A

A

x x b

y y b

ϕ α

ϕ α

= + ⋅ +

= + ⋅ +
                                            (28) 

where ,A Ax y and ϕ are the functions of time given by 

Eqs. (27). 
Eqs. (28) describe the motion of point M in plane Oxy and at the same time give 

the equation of the point's path in parametric form. The usual equation of the path 
can be obtained by eliminating time t from Eqs. (28). 

As we know, plane motion of a rigid body is a combination of a translation in 
which all points of the body move with the velocity of the pole VA and a rotation 
about that pole. Let us show that the velocity of any point M of the body is the 
geometrical sum of its velocities for each component of the motion. 

                                               
 
The position of a point M in section S is specified by the radius vector 

Ar r r'= + (Fig.18),  where Ar  is the radius vector of the pole A, r ' =AM is the vector 

which specifies the position of point M with reference to the axes ' 'Ax y  that perform 

translational motion together with A. The motion of section S with reference to those 
axes is the motion about pole A. Then,  

.A
M

d r d r d r '
V

dt dt dt
= = +  

   Fig. 18                            Fig.19 
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In this equation A
A

d r
V

dt
=  is equal to the velocity of pole A. This quantity 

d r

dt

′
 is equal to the velocity 

_

MAV  of point M at ,Ar const=  i.e., when A is fixed or, in 

other words, when the section S rotates about pole A. It thus follows from the 

preceding equation that                         
_ _ _

.M A MAV V V= +                                           (29) 

The velocity of rotation 
_

MAV  point M about pole A is 

,MA MAV MA V MAω
 

= ⋅ ⊥ 
 

where ω  is the angular velocity of the rotation of the 

body. 
Thus, the velocity of any point of a body is the geometrical sum of the velocity 

of any other point taken as the pole and the velocity of rotation of point about the 

pole.The magnitude and direction of the velocity MAV  are found by constructing a 
parallelogram (Fig. 19). 

 

3.3. Theorem of the Projections of the Velocities of Two Points 

of a Body. Instantaneous Centre of Zero Velocity 

 

The use of Eq. (29) to determine the velocities of the points of a body usually 
leads to involved computations. However, we can evolve from Eq.(29) several 
simpler and more convenient methods of determining the velocity of any point of a 
body. 

One of these methods is given by the theorem: the projections of the velocities 
of two points of a rigid body on the straight line joining those points are equal.  

Consider any two points A and B of a body. 
Taking point A as the pole (Fig. 20) we have 

from Eq. (29)  
_ _ _

.B A BAV V V= +  
Projecting both members of the equation on 

AB and taking into account that vector VBA is 
perpendicular to AB we obtain: 

cos cos ,B AV Vβ α=  

and the theorem is proved. This result offers a 
simple method of determining the velocity of 

any point of a body if the direction of motion of that point and the velocity of any 
other point of the same body are known. 

Another simple and visual method of determining the velocity of any point of a 
body performing plane motion is based on the concept of instantaneous centre of zero 
velocity. 

The instantaneous centre of zero velocity is a point belonging to the section of a 
body or its extension which at the given instant is momentarily at rest. 

AV  
BAV  

BV  

AV  

90 ̊ 90 ̊ 

A B

α  α  
β 

Fig.20 
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It will be readily noticed that if a body is in non-
translational motion such one and only one point 
always exists at any instant. Let point A and B in 
section S of a body have, at time t, non-parallel 

velocities 
_

AV  and 
_

BV  (Fig. 21). Then point P of 

intersection of perpendiculars Aa, to vector 
_

AV  and 

Bb to vector  

_

BV  will be the instantaneous centre of 

zero velocity, as 
_

0pV = . For, if we assumed that 
_

0pV ≠  then, by the theorem of the projections of the velocities of the points of a 

body, vector 
_

pV  would have to be simultaneously perpendicular to AP (as 
_

AV AP⊥ ) 

and to BP (as 
_

BV BP⊥ ),  which is impossible.     
It also follows from the theorem that at the given instant, no other point of 

section S can have zero velocity (e.g., for point a, the projection of 
_

BV  on Ba is not 

zero and consequently
_

0aV ≠ . 
 

3.4. Determination of the Velocity of a Point of a Body Using 

the Instantaneous Centre of Zero Velocity 

 

Using Eq. (29) and taking a point P as the pole at time t the velocity of point A 

will be 

_ _ _ _

,AP
APpV V V V= + =  

as 
_

p
V =0. The same result can be obtained for any other point of the body. 

Thus, the velocity of any point of a body is equal to the velocity of its rotation 
about the instantaneous centre of zero velocity. 

Hence, we have: 

      
_

,AAV PA V PAω
 

= ⋅ ⊥ 
 

 

,B BV PB V PBω  
= ⋅ ⊥ 

 
 etc.                                  (30) 

It also follows from Eqs.(30) that 

,A B

A

V V

P PB
=                                                        (31) 

i.e., the velocity of any point of a body is proportional to its distance from the 
instantaneous centre of zero velocity. 

These results lead to the following conclusions: 
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1) To determine the instantaneous centre of zero velocity, it is sufficient to know the 

directions of the velocities 
_

AV  and 
_

BV  of any two points A and B of a body or their 
paths. The instantaneous centre of zero velocity lies at the intersection of the 
perpendiculars erected from points A and B to their respective velocities, or to the 
tangents to their paths. 
2)  To determine the velocity of any point of a body, it is necessary to know the 
magnitude and direction of the velocity of any point A of that body and the direction 
of the velocity of another point B of the same body. Then, by erecting from points A 

and B perpendiculars to 
_

AV  and 
_

BV  , we obtain the instantaneous centre of zero 

velocity P and, from the direction of 
_

AV ,  the sense of rotation of the body. Next, 

knowing 
_

AV  we can find from Eq. (3I) the velocity 
_

MV  of any point M of the body. 

Vector 
_

MV  is perpendicular to PM in the direction of the rotation. 
3)   The angular velocity of a body, as can be seen from Eqs. (30) is at any given 
instant equal to the ratio of the velocity of any point to its distance from the 
instantaneous centre of aero velocity P: 

BV

PB
ω =  

Let us consider some special cases of the instantaneous centre 
of zero velocity. 
I) If plane motion is performed by a cylinder rolling without 
slipping along a fixed cylindrical surface, the point of contact P  
(Fig. 22) is momentarily at rest and, consequently, is the 

instantaneous centre of zero velocity (
_

0pV =  because if there is 

no slipping,  the contacting points of both bodies must have the 
same velocity, and the second body is motionless). An example 

of such motion is that of a wheel running on a rail.  
 
2) If the velocities of points A and B of the body are parallel to each other, and AB is 

not perpendicular to 
_

AV  (Fig. 23a)  
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the instantaneous centre of zero velocity lies in infinity, and the velocities of all 

points are parallel to 
_

AV . Prom the theorem of the projections of velocities it follows 

that cos cosA BV Vα β=  i.e. B AV V= . The result is the same for all other points of the 

body. Consequently, in this case the velocities of all points of the body are equal in 
magnitude and direction at every instant, i.e., the instantaneous distribution of the 
velocities of the body is that of translation. This state of motion is also called 
instantaneous translation. The angular velocity of the body at the given instant is 
zero. 

3) If the velocities of points A and B are parallel and AB is perpendicular to 
_

AV , 
the instantaneous centre of zero velocity P can be located by the construction shown 
in Fig. 23b. The validity of this construction follows from the proportion (3I). 

 

3.5. Determination of the Acceleration of a Point of a Body 

 

We shall demonstrate that, like velocity, the acceleration of any point of a body 
in plane motion is composed of its accelerations of translation and rotation. The 
location of point M with respect to axes Oxy (Fig. 18) is specified by the radius vector 

_ _ _

Ar r r'= +   where 
_ _____

.r' AM=   Hence, 

_ _ _
2 2 2_

2 2
.M

A
d r d r d r'

a
dt dt dt

= = +  

In this equation the quantity 

_
2 _

2

A
A

d r
a

dt
=  is the acceleration of the pole A, and the 

quantity 

_
2 _

2
MA

d r'
a

dt
=  is the acceleration of point M in its rotation with the body round 

A. Hence, 

__ __ __

.M A MAa a a= +                                                  (32) 

From Eqs. (25 ) and (26), the acceleration of point M in its rotation about A is 

2 4

2
, tan ,

MA
a MA

ε
ε ω µ

ω
= + =  

where µ  is the angle between the direction 
__

MAa  and line MA. 
Thus, the acceleration of any point of a body is composed of the acceleration of 

any other point taken for the pole and the acceleration of the point in its rotation 
together with the body about that pole. The magnitude and direction of the 

acceleration 
M

a  are determined by constructing a parallelogram (Fig. 24).  
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However, the computation of 
_

Ma  by means of the parallelogram in Fig. 24 
makes the solution more difficult, as it becomes necessary first to calculate the angle 

µ  and then the angle between vectors MAa  and Aa . Therefore, in problem solutions it 

is more convenient to replace vector MAa  by its tangential and normal components: 
2, .n

MA MAa AM a AMτ ε ω= ⋅ = ⋅  

Vector 
MA

aτ  is perpendicular to AM in the direction of the rotation if it 

accelerated, and opposite the rotation if it is retarded. Vector 
MA

aτ  is always directed 

from point M to the pole A (Fig. 25). 
Instead of Eq. (32) we obtain 

.n

A A MA
a a a aτ= + +                                          (33) 

If pole A is in non-rectilinear motion, its acceleration is also composed, of the 
tangential and normal accelerations, hence 

        n

M A An MA MA
a a a a aτ

τ
= + + +  

 

4. RESULTANT MOTION OF A PARTICLE 

 

4.1.  Relative, Transport, and Absolute Motion 

So far we have considered the displacement of a particle or body with respect to 
one given frame of reference. But in solving problems of mechanics it is often more 
expedient (and sometimes necessary) to consider the motion of a particle or body 
simultaneously with respect to two frames of reference, one of which is assumed to 
be fixed and the other moving in some specified way with reference to the first. The 
motion performed in this case is called resultant, or combined motion. 

For example, when a sphere rolls on the deck of a moving boat, its motion with 
respect to the shore is the resultant of its rolling relative to the deck (the moving 
frame of reference) and its motion together with the deck with respect to the shore 

(the fixed frame of reference). Thus, the resultant motion of the sphere can be 
resolved into two simpler, and easier analyzed, motions. The method of resolving a 
motion into simpler motions by introducing a supplementary moving frame of 
reference is widely employed in kinematical calculations. 
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Consider the resultant motion of a particle 
M moving with respect to a frame of reference 

Oxyz which is in turn moving with relation to 
another frame of reference O1 x1 y1 z, which we 
assume to be fixed (Fig. 26).We employ the 
following definitions. 

The motion performed by the particle M 
with respect to the moving coordinate system is 
called relative motion. The path AB described by 
the particle in relative motion is called the 
relative path. The velocity of the motion of 
particle M relative to the axes (Oxyz, i.e, along 
the curve AB is called the relative velocity 

(denoted by the symbol 
__

relV ), and the particles acceleration in that motion is the 

relative acceleration (denoted rela  ). It rela  follows from the definition that in 

computing relV  and axes Oxyz can be assumed to be fixed. 

The motion performed by the moving frame of reference Oxyz, together with all 
the points of space fixed with respect to it, relative to the fixed system 01 x1 y1 z1 is 
for the particle M, the motion of transport. 

The velocity of the point fixed in the moving axes Oxyz with which the particle 
M coincides at a given instant is called the transport velocity of the particle M at that                                                                   

instant (denoted by 
__

trV ), and the acceleration of that point is called the transport 

acceleration of the particle M  (denoted by tra  ). 

If we imagine the relative motion of particle M to be taking place on the surface 
or inside of a rigid body in which the moving coordinates Oxyz are fixed, then the 
transport velocity or acceleration of particle M at any given instant is the velocity or 
acceleration of the point of the body which coincides with M at that instant. 

The motion of the particle with respect to the fixed frame of reference O1 x1 y1 z1 

is called the absolute, or resultant, motion. The path CD described in this motion is 
called the absolute path, the velocity, is the absolute velocity (denoted      ), and 

the acceleration, the absolute acceleration (denoted aa ). 

In the example cited in the beginning of this section, the motion of the sphere 
with respect to the deck is relative motion, and the velocity of this motion is the 
relative velocity of the sphere. The motion of the ship with respect to the shore is, for 
the sphere, the motion of transport, and the velocity of the point of the deck with 
which the sphere coincides at the given time is, for the sphere, the transport velocity. 
Finally, the motion of the sphere, with respect to the shore is the absolute motion of 
the sphere and the velocity of that motion is the absolute velocity of the sphere. 

In order to solve the relevant problems of Kinematics, it is necessary to establish 
the relationships between the velocities and accelerations of the relative, transport, 
and absolute motions. 
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4.2. Composition of velocities 

 

Let us consider a particle M performing a resultant motion. Let the relative 

displacement of the particle along its path AB in the time interval 1t t t∆ = −  be 

specified by the vector  (Fig. 27 a). In the same time interval, the curve AB 
moving together with the moving axes Oxyz not shown in Fig. 26 a, occupies a new 

position .1 1A B  Simultaneously, the point M on curve AB,  

                            

with which the particle M is coincident at time t performs a transport displacement. 
As a result of these displacements particle M will occupy a position M1 its                                                  
absolute displacement in the time interval ∆ t being From the vector 

triangle 1MM"M  we have: 
_____ _____ ______

1 1 .MM MM " M"M= +  

Dividing the equation by ∆ t and passing to the limit, we obtain: 
_____ _____ ________

0 0 0
lim lim lim .1 1

t t t

MM MM" M"M

t t t∆ → ∆ → ∆ →
= +

∆ ∆ ∆
 

    By definition 

_____

1

0
lim

a
t

MM
V

t∆ →
=

∆
         

_____

0
lim .

tr
t

MM"
V

t∆ →
=

∆
 

As for the last component, since at t U∆ →  curve A1B1 tends to coincide with 
curve AB, in the limit we have: 

______

0 0
lim lim .1

rel
t t

M"M MM'
V

t t∆ → ∆ →
= =

∆ ∆
 

 
As a result we obtain: 

__

aV relV=
__

trV+ .                                                   (34) 
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Vectors
__

aV , relV and 
__

trV are tangential to the respective paths (Fig. 27, b). 

Thus, we have proved the following theorem of the composition of velocities: 
in resultant motion the absolute velocity of a point is the geometrical sum of the 
relative velocity and the transport velocity. 

The construction in Fig. 27 b is called the parallelogram of velocities. 

The absolute velocity in magnitude is equal: 

2 2 2 cos ,a rel tr rel trV V V V V α= + +                                         (35) 

where α is an angle between the directions of velocities 
_

relV  and 
_

trV . 

4.3. Velocity and Acceleration of a Point of a Body Having 

       one Fixed Point       

 

Consider some body having one fixed point 0 (Fig. 28). Let us determine the 
velocity vector and acceleration vector of any point M of this body. 

Let the vector of angular velocity of a body at considered 
instant be ω  .Consider the vector product rω ×  where r  is 
the radius vector from the fixed point O to the point M. The 
absolute value of the product is 

sin .r r hω ω α ω× = =  

vectors rω ×  and 
_

V , it will be readily observed,  have the 
same direction and dimension. Consequently, 

                                .V rω= ×                                            (36) 
Hence, the velocity vector for any point M of a body is 

equal to the vector product of the angular velocity of that 
body and the radius vector of the point. 

Now determine the acceleration of point M from Eq. 
(36) differentiating with respect to time we have: 

.
dV d dr

a r
dt dt dt

ω
ω= = × + ×  

But 
d

dt

ω
ε=   and

__dr
V

dt
= , therefore, 

a r Vε ω= × + ×                                                  (37) 

 

In some problems of mechanics, particularly in 
resultant or absolute motion of a particle moving 
axes Oxyz are used. When the axes are in 

translational motion, the unit vectors i , j , k remain 

constant. However, if the trihedron Oxyz in Fig. 29 
rotates about an axis OP, the unit vectors cease to be 

constants as their directions change with time. In this case, to calculate the derivative 
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of a vector, one must know the derivatives of the unit vectors i , j , k .  Unit vector i  

can be treated as the radius vector 
A

r i=  of a point A on                                                  

the axis x at unit distance from the origin O. Then, 

.A
A

di dr
V

dt dt
= =  

But according to Eq. (36), 
AAV r jω ω= × = ×  where ω  is the angular velocity of the 

rotation about axis OP. Similar relationships are obtained for the derivatives of j  and 

k , and finally we obtain: 

,
d i

i
dt

ω= ×    ,
d j

j
dt

ω= ×   ,
d k

k
dt

ω= ×                            (38) 

 

 

4.4. Composition of Accelerations 

Let us determine the dependence between the relative and transport accelerations 
of a particle. 

Prom Eq. (34) we obtain: 

.
A

A rel tr
dV dV dV

a
dt dt dt

= = +                                              (39)                         

 
Let us compute the derivatives in the 

right-hand side of the equation which, as 
we shall see, are in general case not equal 

to 
rel

a  and tra . 

Let the position of particle M with 
respect to the moving axes Oxyz in Fig. 
30 be given by its x, y, z coordinates. 

Since in computing relV and trV the motion 

of the moving axes is disregarded (they 
can be assumed fixed), the projections of 

vectors relV  and rela on axes Oxyz in any 

transport motion are then given by the 
Eqs. (8) and (10). 

 
 

 Consequently, , .rel relV xi yj zk a xi yj zk= + + = + +� � �� ��� ��                       (40) 

 

Assume that the angular velocity of the motion of transport is ω . In this case 
axis OD may either be fixed or it may be the instantaneous axis of rotation (when 

Fig. 30 
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point 0 is fixed; see p.4.3). In both cases the unit vectors are not constant as they 
change their directions. Therefore we obtain from Eqs.(40): 

( ) ,rel
rel 1

dV di dj dk
xi yj zk x y z a a

dt dt dt dt

 
= + + + + + = + 

 
�� �� � ��� �  

where 1a  denotes the second bracket in the right-hand side of the equation. 

Calculating  1a  with the help of Eqs.(38) we obtain: 

( ) ( ) ( ) ( )1 ,x rela x i y j z k xi yj zk Vω ω ω ω ω= × + × + × = + + = ×� � � �� �  

and finally, 

1,
rel

rel

dV
a a

dt
= +     where   1 .rela Vω= ×                                 (41) 

In this equation the quantity rela   takes into account the change in vector relV  

only in the relative motion, and the new member 1a  takes into account the change of 

vector relV in its rotation together with trihedron  Oxyz around the axis OP, i.e., in the 
motion of transport. 

Furthermore, in rotational motion the velocity and acceleration of any point  
fixed with respect to the axes Oxyz are determined by Eq. (36) and (37),  the same as 

for the points of a rigid body. But tr mV V=  and tr ma a= ,  hence Eqs. (36) and (37) 

yield 

( ) ( ), ,
tr tr tr

V r a r Vω ε ω= × = × + ×                             (42) 

where r  is the radius vector of point m coincident at the given instant with the radius 
vector of the moving particle M. Hence, 

,trdV d dr
r

dt dt dt

ω
ω

   
= × + ×   
   

 

here ,
a rel tr

dr
V V V

dt
= = + and besides .

d

dt

ω
ε= Hence, 

          ( ) ( ) ( ).tr
tr rel

dV
r V V

dt
ε ω ω= × + × + ×  

From this equation, taking into account the second of Eqs.(42), we obtain: 

2
tr

tr

dV
a a

dt
= + ,    where     2 rela Vω= ×                                  (43) 

 

The quantity tra  takes into account the change in vector trV  only in the motion 

of transport, because it is computed as the acceleration of point m, fixed in the 

reference frame Oxyz. But the new member 2a  takes into account the change in 

vector trV  that occurs in the relative motion of particle M,  since as a result of that 

motion M moves from position m to a new position m1 where the value of trV  is 
different. 



 30

Now substituting the quantities (41) and (43) into Eq. (39), we have: 

.a rel tr 1 2a a a a a= + + +                                       (44) 

Let us introduce the notation: 

( )1 2 2 .
cor rel

a a a Vω= + = ×                                        (45) 

The quantity cora  which characterizes the rate of change of the vector of relative 

velocity in the motion of transport and the rate of change of the vector of the 
transport velocity in the relative motion is called the supplementary, or Coriolis, 
acceleration of the particle. Then, from Eqs. (44) and (45) we obtain: 

.a rel tr cora a a a= + +                                                (46) 

Eq. (46) expresses the Coriolis theorem: 
the absolute acceleration of a particle is equal to the geometrical sum of three 

accelerations: the relative acceleration, which characterizes the time rate of change 

of the relative velocity in the relative motion, the transport acceleration, which 

characterizes the time rate of change of the transport velocity in the transport 

motion, and the Coriolis acceleration, which characterizes the time rate of change of 

the relative velocity in the transport motion and of the transport velocity in the 

relative motion. 

4.5. Calculation of relative, Transport, and Coriolis Accelerations 

We examined the question of computing the relative and transport accelerations 
of a particle in proving the theorem. These quantities are determined, according to the 
known equations of Kinematics. Relative acceleration is computed by the 

conventional methods of particle Kinematics. In calculating tra  the relative motion of 

the particle can be disregarded, consequently tra  is computed as the acceleration of a 

point belonging to a certain rigid body fixed relative to the reference frame Oxyz and 
moving together with it, i.e. by the methods of rigid-body Kinematics. 

The Coriolis acceleration is calculated from Eq. (45): 

2 ,cor rela Vω= ×                                                  (47) 

where ω  is the angular velocity of the motion of transport. 
Thus, the  Coriolis acceleration of a particle is equal to the double vector product 

of the angular velocity of the motion of 
transport and the relative velocity of 
the particle. 

If the angle between the vectors 

relV  and ω  is α  then in 

magnitude 2 sin .cor rela Vω α=        (48) 

The vector cora  is of the same sense 

as the vector relVω × , i.e., normal to the 

plane through vectors ω  and relV  in 
the direction from which a counterclockwise rotation would be seen to carry vector 

coracora

a)                Fig. 31      b)             

b) 

ω  ω  

M 
p 

o90  
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α 
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o90  

o90  M 



 31

ω  into vector relV  through the smaller angle (Fig. 31, a). It can also be seen that the 

direction of vector cora  can be obtained by projecting vector relV  on plane P, which is 

normal to ω , and turning that projection through 900 in the direction of the rotation of 
transport. 

     If the relative path is a plane curve, moving in its plane, then angle α = 900 

(Fig.31, b) and in magnitude 2cor rela Vω= ⋅ . It can be seen from Fig. 31, b that in this 

case the direction of cora  can be obtained by turning the vector of the relative velocity 

relV  through 900 in the direction of the rotation of transport. 
From Eq. (48) we see that the Coriolis acceleration is zero when: 

1) ω = 0, if the motion of transport is translational or if the angular velocity of 
the rotation of transport becomes zero at a given instant; 

2) 0,relV =  if there is no relative motion or if the relative velocity becomes zero 

at a given instant; 

3) angle α = 00, α = 1800, i.e., if the relative motion is parallel to the axis of the 

rotation of transport or if vector relV  parallel to that axis at a given instant. 

 

 

   

 

 

 

 

 
 


